Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : 161-168, 2005.
Article in English | WPRIM | ID: wpr-201947

ABSTRACT

Phospholipase C-gamma1, containing two SH2 and one SH3 domains which participate in the interaction between signaling molecules, plays a significant role in the growth factor-induced signal transduction. However, the role of the SH domains in the growth factor-induced PLC-gamma1 regulation is unclear. By peptide-mass fingerprinting analysis, we have identified SHIP1 as the binding protein for the SH3 domain of PLC-gamma1. SHIP1 was co-immunoprecipitated with PLC-gamma1 and potentiated EGF-induced PLC-gamma1 activation. However, inositol 5'-phosphatase activity of SHIP1 was not required for the potentiation of EGF-induced PLC-gamma1 activation. Taken together, these results suggest that SHIP1 may function as an adaptor protein which can potentiate EGF-induced PLC-gamma1 activation without regards to its inositol 5'-phosphatase activity.


Subject(s)
Animals , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , COS Cells/enzymology , Chlorocebus aethiops , Enzyme Activation , Epidermal Growth Factor/pharmacology , Immunoprecipitation , Inositol 1,4,5-Trisphosphate/metabolism , Molecular Sequence Data , Type C Phospholipases/chemistry , Phosphoric Monoester Hydrolases/chemistry , Protein Binding , Signal Transduction , src Homology Domains/physiology
2.
Journal of Veterinary Science ; : 325-330, 2004.
Article in English | WPRIM | ID: wpr-79781

ABSTRACT

Tea is a popular beverage. Recently, green tea was reported to increase the number of peroxisomes in rats. In this study, to find out whether the green tea-induced proliferation of peroxisomes is mediated by PPARalpha , a transient transfection assay was carried out to investigate the interactions of tea extracts (green tea, black tea,oolong tea and doongule tea) and tea components (epigallocatechin gallate, epigallocatechin, epicatechin gallate, epicatechin and gallic acid), with mouse cloned PPARalpha . Green tea and black tea extracts, and epigallocatechin gallate, a major component of fresh green tea leaves, increased the activation of PPAalpha 1.5-2 times compared with the control. It is suggested that the green tea induced-peroxisomal proliferation may be mediated through the transactivation of PPARalpha and that epigallocatechin gallate may be an effective component of green tea leaves. This would account for the increase in the number of peroxisomes and the activity of peroxisomal enzymes previously reported. However, black tea, a fully fermented product, had a stronger effect than oolong tea extract. These results also suggest, that in addition to epigallocatechin gallate, green tea leaves may possess some active chemicals newly produced as a result of the fermentation process, which act on PPARalpha like other peroxisome proliferators.


Subject(s)
Animals , COS Cells/enzymology , Camellia sinensis , Catechin , Chlorocebus aethiops , PPAR alpha/metabolism , Plant Extracts/pharmacology , Plasmids , Tea , Transcriptional Activation/drug effects , Transfection/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL